Geoboard Shapes

Published on Sunday, 3rd May 2015, 04:00 am; Solved by 162;
Difficulty rating: 90%

Problem 514

A geoboard (of order N) is a square board with equally-spaced pins protruding from the surface, representing an integer point lattice for coordinates 0 ≤ x,yN.

John begins with a pinless geoboard. Each position on the board is a hole that can be filled with a pin. John decides to generate a random integer between 1 and N+1 (inclusive) for each hole in the geoboard. If the random integer is equal to 1 for a given hole, then a pin is placed in that hole.

After John is finished generating numbers for all (N+1)2 holes and placing any/all corresponding pins, he wraps a tight rubberband around the entire group of pins protruding from the board. Let S represent the shape that is formed. S can also be defined as the smallest convex shape that contains all the pins.


The above image depicts a sample layout for N = 4. The green markers indicate positions where pins have been placed, and the blue lines collectively represent the rubberband. For this particular arrangement, S has an area of 6. If there are fewer than three pins on the board (or if all pins are collinear), S can be assumed to have zero area.

Let E(N) be the expected area of S given a geoboard of order N. For example, E(1) = 0.18750, E(2) = 0.94335, and E(10) = 55.03013 when rounded to five decimal places each.

Calculate E(100) rounded to five decimal places.